Research - Institute of Biochemistry - Membrane and Stress Biology Unit - Laboratory of Molecular Stress Biology

László VÍGH
research professor

Gábor BALOGH ELEK senior research associate
Attila GLATZ senior research associate
Zsolt TÖRÖK senior research associate
Tim Hans CRUL research associate
Imre GOMBOS research associate
Mária PÉTER research associate
Péter GUDMANN junior research associate
Barbara DUKIC Ph.D. student
Ádám István TISZLAVICZ Ph.D. student
Vanda ZSIROS Ph.D. student
Erika ZUKIC laboratory assistant


Our major goal is to understand those changes in lipid composition, fluidity- and microdomain organization of plasma and endo-membranes which alter the expression of the stress protein molecular chaperones (HSPs). Among the specific transcription factors, HSF1 plays a central role in this “membrane-controlled” boosting or silencing of HSPs. The relationship between the specific distribution of lipid rafts and the concomitant changes in the level, profile and cellular distribution of HSPs is currently determined via monitoring the surface membrane microdomains with confocal- and ultrasensitive single molecular microscopy. Through comparative lipidomics, key lipid molecular species involved in the activation or attenuation of HSP signaling pathways are identified. We have shown that membrane-associated HSPs can control major attributes of the membranes, like fluidity, permeability, curvature, and the operation of raft-associated signaling platforms. Moreover, membrane association of HSPs can refine hsp gene expression. Applying these principles can yield novel pharmaceutical agents that have the potential of major therapeutic benefit to a number of diverse disease states.

Stress protein molecular chaperones

Induced by a wide range of stressors, from temperature stress to hypoxia, inflammation, infections or environmental pollutants, stress proteins, also termed heat shock proteins (HSPs) play key roles in living systems. The HSPs are named according to their molecular weights. HSP100, HSP90, HSP70, HSP60 and the “small heat shock proteins”, each define families of chaperones.

The HSP molecular chaperones are able to recognize damaged proteins and to redirect them to repair (refolding) or to proteolysis. By helping to stabilize partially unfolded proteins, HSPs aid in transporting proteins across membranes within the cell. HSPs can regulate the life or death of cells by directly modulating certain apoptotic signaling events or indirectly, by participating in antigen processing.

Stress proteins in the membranes

Quite surprisingly, a subpopulation of HSPs is present either on the surface or within the cellular membranes. As we have shown in our studies described below, via their specific lipid and protein interactions certain HSPs can control major attributes of membranes. The membrane (raft or non-raft) associated HSPs can also participate in the orchestration of distinct stress signaling platforms. In spite of lacking a secretory signal, some HSPs are mysteriously released from cells by various secretory mechanisms. Irrespective of the secretory routes chosen (raft-, exosome- or secretary granule-mediated, etc.), these exogenous HSPs can then stimulate both the innate and the adaptive immune system.

Stress response from membranes and back to membranes: lessons from unicellular stress models

An earlier “central dogma” suggested that stress-induced protein denaturation serves as a sole primary stress-sensing machinery, which triggers Hsp gene expression. From the past decade, we have introduced and experimentally verified a new but not exclusive cellular “thermosensor” model, which predicts the existence of membrane-associated stress sensing and signaling mechanisms. As depicted below (see Fig.1.), we propose that changes in the physical state (fluidity) and/or composition of lipid molecular species with the concomitant destabilization/reorganization of membrane microdomains may serve as the “primary molecular switch” for the operation of these “cellular thermometers”.

The striking similarities of the human and Schizosaccharomyces pombe (fission yeast) signal transduction pathways prompted us to introduce S. pombe as a powerful and complementary “micromammal” model. We use it for elucidating early activation steps of the heat shock response including membrane-associated stress sensors, stress signaling pathways and the interplay of potential cellular stress survival strategies (i.e. the concerted and complementary actions of sugar (trehalose), protein (HSP), and lipid chaperones). Thus, the S. pombe model may allow studying the individual members or the entire stress-protective network in a simple cellular context.

Figure 1. A model of the crosstalk between the stress sensory membrane, hsp gene expression, and the membrane association of a specific subset of HSPs (see Vigh et al, TIBS, 2007). Temperature stress modifies the physical state of the membrane and this activates a membrane signal culminating in the transcription of hsp genes. In turn, as our group evidenced for various prokaryotic models, specific subsets of HSPs (e.g. GroESL and the small HSP called HSP17 in the blue-green alga Synechocystis) localize with specific membrane domains temporarily via newly formed “heat shock lipids”, thus re-establishing proper membrane lipid order and phase-state that then may turn off hsp gene transcription.

Membrane-regulated stress response in mammalian cells: lipid rafts at the crossroad

Due to their multiple and vital functions, stress proteins play a fundamental role in the pathology of several human diseases. Aberrantly high levels of certain HSP classes are characteristic in cancer cells and the converse situation applies for type-2 diabetes or neurodegeneration. In accordance, understanding the mechanism whereby mammalian cells can elicit a stress protein response is of key importance. In addition, correcting the defects of membrane domains, engaged in the generation and transmission of stress signals may be of paramount importance for the design of new drugs with the ability to induce or attenuate the level of a particular class of heat shock proteins (see Fig.2.).

Figure 2. Membrane-mediated stress protein response and the cellular localization of HSPs (highlighted by HSP70) in mammalian cells (see Horváth et al., BBA, 2008). HSF1 is a key coordinator of the initiation of heat shock gene transcription, which is activated mainly by the appearance of denatured or misfolded proteins. In addition, stress sensing-signaling mechanisms operate through stress-induced membrane rearrangements. Such typical membrane-mediated changes that are evidenced to refine the expression of heat shock genes are the non-specific clustering of the growth factor receptors associated with membrane microdomains (“rafts”) (1) or the activation of phospholipases (2), which sequester themselves into unsaturated-rich microdomains and cleave arachidonic acid, a known HSP inducer. Stress activation of such pathways alters the nuclear accumulation and transactivation capacity of HSF1 (3) via its covalent post-translational modifications and ultimately retailor the abundance and profile of HSPs. The function of individual HSPs (highlighted on the scheme by HSP70) depends on their intracellular, membrane bound or extracellular location. The major action of chaperone proteins in the cytosol is to maintain protein homeostasis (4). HSP70 can promote cell survival by inhibiting lysosomal membrane permeabilization via the interaction with specific lipids (5). We are currently studying the interaction of HSPs with cellular lipid droplets. Experimental evidence is accumulating in favor of the presence of HSP70 (and other HSPs) in lipid rafts as components of signaling or trafficking platforms (6). HSPs can also associate with specific lipids and proteins in the plasma membrane, inducing “membrane stabilization” and/or exhibiting an immunogenic potential (7). HSP70s of extracellular location (8) have immunomodulatory capacities and are potent agents in the activation of the innate and adaptive immune system.

Lipidomics of stress response – Lipids in health and disease

Lipids are central to the regulation and control of cellular processes by acting as basic building units for biomembranes, the platforms for the vast majority of cellular functions. Recent developments in lipid mass spectrometry have set the scene for better understanding the composition of membranes, cells and tissues by allowing the precise identification and quantification of the altered levels of lipids induced by a disease state, a gene mutation (knockout, or over-expression), a therapeutic treatment, or other perturbations.

Figure 3. High performance Orbitrap instruments in combination with different ionization, sample delivery, and chromatoghraphic separation strategies ensure several requirements for both basic research and clinical studies.

Selected publications

Vígh, L., Literati, N.P., Horváth, I., Török, Z., Balogh, G., Glatz, A., Kovács, E., Boros, I., Ferdinandy, P., Farkas, B., Jaszlits, L., Jednakovits, A., Korányi, L. and Maresca, B. (1997). Bimoclomol: a novel, non-toxic, hydroxylamine derivative with stress protein inducing activity and wide cytoprotective effects. Nature Med. 3: 1150-1154.

Török, Z., Horváth, I., Goloubinoff, P., Kovács, E., Glatz, A., Balogh, G. and Vígh, L. (1997). Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc. Natl. Acad. Sci. U.S.A. 94: 2192-2197.

Glatz, A., Horváth, I., Varvasovszki, V., Kovács, E., Török, Z. and Vígh, L. (1997). Chaperonin genes of the Synecosystis PCC 6803 are differentially regulated under light-dark transition during heat stress. Biochem. Biophys. Res. Commun. 239: 291-297.

Vígh, L., Maresca, B. and Harwood, J.L. (1998). Does the membrane physical state control the expression of heat shock and other genes? Trends Biochem. Sci. 23: 369-374.

Horváth, I., Glatz, A., Varvasovszki, V., Török, Z., Páli, T., Balogh, G., Kovács, E., Nádasdi, L., Benkő, S., Joó, F. and Vígh, L. (1998). Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: Identification of hsp17 as a "fluidity gene". Proc. Natl. Acad. Sci. U.S.A. 95: 3513-3518.

Glatz, A., Vass, I., Los, D. and Vígh, L. (1999). The Synechocystis model of stress: from molecular chaperons to membranes. Plant Physiol. Biochem. 37: 1-12.

Török, Z., Goloubinoff, P., Horváth, I., Tsvetkova, N.M., Glatz, A., Balogh, G., Varvasovszki, V., Los, D,A., Vierling, E., Crowe, J.H. and Vígh, L. (2001). Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc. Natl. Acad. Sci. U.S.A. 98: 3098-3103.

Kovács, E., van der Vies, S.M., Glatz, A., Török, Z., Varvasovszki, V., Horváth, I. and Vígh, L. (2001). The chaperonins of Synechocystis PCC 6803 differ in heat inducibility and chaperone action. Biochem. Biophys. Res. Commun. 289: 908-915.

Tsvetkova, N.M., Horváth, I., Török, Z., Wolkers, W.F., Balogh, Z., Shigapova, N., Crowe, L.M., Tablin, F., Vierling, E., Crowe, J.H. and Vígh, L. (2002). Small heat-shock proteins regulate membrane lipid polymorphism. Proc. Natl. Acad. Sci. U.S.A. 99: 13504-13509.

Török, Z., Tsvetkova, N.M., Balogh, G., Horváth, I., Nagy, E., Pénzes, Z., Hargitai, J., Bensaude, O., Csermely, P., Crowe, J.H., Maresca, B. and Vígh, L. (2003). Heat shock protein coinducers with no effect on protein denaturation specifically modulate the membrane lipid phase. Proc. Natl. Acad. Sci. U.S.A. 100: 3131-3136.

Vígh, L., Escriba, P.V., Sonnleitner, A., Sonnleitner, M., Piotto, S., Maresca, B., Horváth, I. and Harwood, J.L. (2005). The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Prog. Lipid Res. 44: 303-344.

Soti, C., Nagy, E., Giricz, Z., Vígh, L., Csermely, P. and Ferdinandy, P. (2005). Heat shock proteins as emerging therapeutic targets. Brit. J. Pharmacol. 146: 769-780.

Shigapova, N., Török, Z., Balogh, G., Goloubinoff, P., Vígh, L. and Horváth, I. (2005). Membrane fluidization triggers membrane remodeling which affects the thermotolerance in Escherichia coli. Biochem. Biophys. Res. Commun. 328: 1216-1223.

Balogi, Z., Török, Z., Balogh, G., Josvay, K., Shigapova, N., Vierling, E., Vígh, L. and Horváth, I. (2005). "Heat shock lipid" in cyanobacteria during heat/light-acclimation. Arch. Biochem. Biophys. 436: 346-354.

Balogh, G., Horváth, I., Nagy, E., Hoyk, Z., Benkő, S., Bensaude, O. and Vígh, L. (2005). The hyperfluidization of mammalian cell membranes acts as a signal to initiate the heat shock protein response. FEBS J. 272: 6077-6086.

Csermely, P. and Vígh, L. Eds. (2006). Molecular aspects of the stress response: Chaperones, membranes and networks. Berlin, New York: SPRINGER, 201p.

Vígh, L., Horváth, I., Maresca, B. and Harwood, J.L. (2007). Can the stress protein response be controlled by 'membrane-lipid therapy'? Trends Biochem. Sci. 32(8):357-363.

Nakamoto, H. and Vígh, L. (2007). The small heat shock proteins and their clients. Cell. Mol. Life Sci. 64(3): 294-306.

Nagy, E., Balogi, Z., Gombos, I., Akerfelt, M., Bjorkbom, A., Balogh, G., Török, Z., Maslyanko, A., Fiszer Kierzkowska, A., Lisowska, K., Slotte, P.J., Sistonen, L., Horváth, I. and Vígh, L. (2007). Hyperfluidization-coupled membrane microdomain reorganization is linked to activation of the heat shock response in a murine melanoma cell line. Proc. Natl. Acad. Sci. U.S.A. 104(19): 7945-7950.

Horváth, I., Multhoff, G., Sonnleitner, A. and Vígh, L. (2008). Membrane-associated stress proteins: More than simply chaperones. BBA - Biomembranes 1778(7-8): 1653-1664.

Escriba, P.V., Gonzalez-Ros, J.M., Goni, F.M., Kinnunen, P.K.J., Vígh, L., Sanchez-Magraner, L., Fernandez, A.M., Busquets, X., Horváth, I. and Barcelo-Coblijn, G. (2008). Membranes: a meeting point for lipids, proteins and therapies. J. Cell. Mol. Med. 12(3): 829-875.

Chung, J., Nguyen, A.K., Henstridge, D.C., Holmes, A.G., Chan, M.H.S., Mesa, J.L., Lancaster, G.I., Southgate, R.J., Bruce, C.R., Duffy, S.J., Horváth, I., Mestril, R., Watt, M.J., Hooper, P.L., Kingwell, B.A., Vígh, L., Hevener, A. and Febbraio, M.A. (2008). HSP72 protects against obesity-induced insulin resistance. Proc. Natl. Acad. Sci. U.S.A. 105(5): 1739-1744.

Balogi, Z., Cheregi, O., Giese, K.C., Juhász, K., Vierling, E., Vass, I., Vígh, L. and Horváth, I. (2008). A mutant small heat shock protein with increased thylakoid association provides an elevated resistance against UV-B damage in Synechocystis 6803. J. Biol. Chem. 283(34): 22983-22991.

Brameshuber, M., Weghuber, J., Ruprecht, V., Gombos, I., Horvath, I., Vigh, L., Eckerstorfer, P., Kiss, E., Stockinger, H. and Schuetz, G.J. (2010). Imaging of mobile long-lived nanoplatfroms in the live cell plasma membrane. J. Biol. Chem. 285(53): 41765-41771.

Hooper, P.L., Hooper, P.L., Tytell, M. and Vígh, L. (2010). Xenohormesis: health benefits from an eon of plant stress response evolution. Cell Stress Chaperones 15(6): 761-770.

Toth, M.E., Gonda, S., Vígh, L. and Santha, M. (2010). Neuroprotective effect of small heat shock protein, Hsp27, after acute and chronic alcohol administration. Cell Stress Chaperones 15(6): 807-817.

Balogh, G., Péter, M., Liebisch, G., Horváth, I., Török, Z., Nagy, E., Maslyanko, A., Benko, S., Schmitz, G., Harwood, J.L. and Vígh L. (2010). Lipidomics reveals membrane lipid remodelling and release of potential lipid mediators during early stress responses in a murine melanoma cell line. Biochim. Biophys. Acta 1801(9): 1036-1047.

Porta, A., Eletto, A., Török, Z., Franceschelli, S., Glatz, A., Vígh, L. and Maresca, B. (2010). Changes in membrane fluid state and heat shock response cause attenuation of virulence. J. Bacteriol. 192(7): 1999-2005.

Porta, A., Török, Z., Horvath, I., Franceschelli, S., Vígh, L. and Maresca, B. (2010). Genetic modification of the Salmonella membrane physical state alters the pattern of heat shock response. J. Bacteriol. 192(7): 1988-1998.

Horváth, I. and Vígh, L. (2010). Stability in times of stress. Nature 463(7280): 436-438.

Haldimann, P., Muriset, M., Vigh, L. and Goloubinoff, P. (2011). The Novel Hydroxylamine Derivative NG-094 Suppresses Polyglutamine Protein Toxicity in Caenorhabditis elegans. J. Biol. Chem. 286(21): 18784-18794.

Balogh, G., Maulucci, G., Gombos, I., Horvath, I., Török, Z., Péter, M., Fodor, E., Páli, T., Benkő, S., Parasassi, T, De Spirito, M., Harwood, J.L. and Vigh, L. (2011). Heat Stress Causes Spatially-Distinct Membrane Re-Modelling in K562 Leukemia Cells. PLOS ONE 6(6): Article Number: e21182.

Gombos, I., Crul, T., Piotto, S., Güngör, B., Török, Z., Balogh, G., Péter, M., Slotte, J.P., Campinga, F., Pilbat, A-M., Hunya, Á., Tóth, N., Literáti-Nagy, Z., Vigh, L. Jr., Glatz, A., Brameshuber, M., Schütz, G.J., Hevener, A., Febbraio, M.A., Horváth, I. and Vigh, L. (2011). Membrane-Lipid Therapy in Operation: The HSP Co- Inducer BGP-15 Activates Stress Signal Transduction Pathways by Remodeling Plasma Membrane Rafts. PLOS ONE 6(12): Article Number: e28818.

Horváth, I., Glatz, A., Nakamoto, H., Mishkind, M.L., Munnik, T., Saidi, Y., Goloubinoff, P., Harwood, J.L. and Vigh, L. (2012). Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog. Lipid Res. 51(3): 208-220.

Péter, M., Balogh, G., Gombos, I., Liebisch, G., Horváth, I., Török, Zs., Nagy, E., Maslyanko, A., Benkő, S., Schmitz, G., Harwood, J.L. and Vígh, L. (2012) Nutritional lipid supply can control the heat shock response of B16 melanoma cells in culture. Mol. Membrane Biol. 29(7): 274-289.

Crul, T., Tóth, N., Piotto, S., Literáti-Nagy, P., Tory, K., Haldimann, P., Kalmár, B., Greensmith, L., Török, Z., Balogh, G., Gombos, I., Campana, F., Concilio, S., Gallyas, F., Nagy, G., Berente, Z., Güngör, B., Péter, M., Glatz, A., Hunya, Á., Literáti-Nagy, Z., Vigh, L., Hoogstra-Berends, F., Heeres, A., Kuipers, I., Loen, L., Seerden, J.P., Zhang, D., Meijering, R.A., Henning, R.H., Brundel, B.J., Kampinga, H.H., Korányi, L., Szilvássy, Z., Mandl, J., Sümegi, B., Febbraio, M.A., Horváth, I., Hooper, P.L. and Vigh, L. (2012). Hydroximic Acid Derivatives: Pleiotrophic Hsp Co-Inducers Restoring Homeostasis and Robustness. Curr. Pharm. Des. 19(3): 309-346.

Juhász, K., Thuenauer, R., Spachinger, A., Duda, E., Horváth, I., Vígh, L., Sonnleitner, A. and Balogi, Z. (2012). Lysosomal Rerouting of Hsp70 Trafficking as a Potential Immune Activating Tool for Targeting Melanoma. Curr. Pharm. Des. 19(3): 430-440.

Balogh, G., Péter, M., Glatz, A., Gombos, I., Török, Z., Horváth, I., Harwood, J.L. and Vígh, L. (2013) Key role of lipids in heat stress management. FEBS Lett. 587(13): 1970-1980.

Török, Z., Crul, T., Maresca, B., Schütz, G.J., Viana, F., Dindia, L., Piotto, S., Brameshuber, M., Balogh, G., Péter, M., Porta, A., Trapani, A., Gombos, I., Glatz, A., Güngör, B., Peksel, B., Vígh, L. Jr., Csoboz, B., Horváth, I., Vijayan, M.M., Hooper, P.L., Harwood, J.L. and Vígh, L. (2014) Plasma membranes as heat stress sensors: From lipid-controlled 3 molecular switches to therapeutic applications. Biochim. Biophys. Acta – Biomembranes 1838(6): 1594-1618. Review.

Escribá, P.V., Busquets, X., Inokuchi, J.I., Balogh, G., Török, Z., Horváth, I., Harwood, J.L. and Vígh. L. (2015) Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Prog. Lipid Res. 2015 May 9. pii: S0163-7827(15)00024-7. doi: 10.1016/j.plipres.2015.04.003. Review.

Antal, O., Péter, M., Hackler, L. Jr., Mán, I., Szebeni, G., Ayaydin, F., Hideghéty, K., Vigh, L., Kitajka, K., Balogh, G. and Puskás, L.G. (2015) Lipidomic analysis reveals a radiosensitizing role of gamma-linolenic acid in glioma cells. Biochim Biophys Acta. 2015;1851(9): 1271-82. doi: 10.1016/j.bbalip.2015.06.003.

Gombos, I. and Vígh, L. (2015) Membrane fluidity in the center of fever-enhanced immunity. Cell Cycle. 14(19):3014-5. doi: 10.1080/15384101.2015.1069506.

Glatz, A., Pilbat, A.M., Németh, G.L., Vince-Kontár, K., Jósvay, K., Hunya, Á., Udvardy, A., Gombos, I., Péter, M., Balogh, G., Horváth, I., Vígh, L. and Török, Z. (2016) Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe. Cell Stress Chaperones. 21(2): 327-38. doi: 10.1007/s12192-015-0662-4.

Kasza, Á., Hunya, Á., Frank, Z., Fülöp, F., Török, Z., Balogh, G., Sántha, M., Bálind, Á., Bernáth, S., Blundell, K.L., Prodromou, C., Horváth, I., Zeiler, H.J., Hooper, P.L., Vigh, L. and Penke, B. (2016) Dihydropyridine Derivatives Modulate Heat Shock Responses and have a Neuroprotective Effect in a Transgenic Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 53(2): 557-71. doi: 10.3233/JAD-150860.

Hooper, P.L., Durham, H.D., Török, Z., Hooper, P.L., Crul, T. and Vígh, L. (2016) The central role of heat shock factor 1 in synaptic fidelity and memory consolidation. Cell Stress Chaperones. 21(5): 745-53. doi: 10.1007/s12192-016-0709-1.

Salah, H., Li, M., Cacciani, N., Gastaldello, S., Ogilvie, H., Akkad, H., Namuduri, A.V., Morbidoni, V., Artemenko, K.A., Balogh, G., Martinez-Redondo, V., Jannig, P., Hedström, Y., Dworkin, B., Bergquist, J., Ruas, J., Vigh, L., Salviati, L. and Larsson, L. (2016) The chaperone co-inducer BGP-15 alleviates ventilation-induced diaphragm dysfunction. Sci Transl Med. 8(350): 350ra103. doi: 10.1126/scitranslmed.aaf7099.

Budzyński, M.A., Crul, T., Himanen, S.V., Toth, N., Otvos, F., Sistonen, L. and Vigh, L. (2017) Chaperone co-inducer BGP-15 inhibits histone deacetylases and enhances the heat shock response through increased chromatin accessibility. Cell Stress Chaperones. 22(5): 717-728. doi: 10.1007/s12192-017-0798-5.

Tóth, E.A., Oszvald, Á., Péter, M., Balogh, G., Osteikoetxea-Molnár, A., Bozó, T., Szabó-Meleg, E., Nyitrai, M., Derényi, I., Kellermayer, M., Yamaji, T., Hanada, K., Vígh, L. and Matkó, J. (2017) Nanotubes connecting B lymphocytes: High impact of differentiation-dependent lipid composition on their growth and mechanics. Biochim. Biophys. Acta 1862(9): 991-1000. doi:10.1016/j.bbalip.2017.06.011.

Péter, M., Glatz, A., Gudmann, P., Gombosm I., Török, Z., Horváth, I., Vígh, L. and Balogh, G. (2017) Metabolic crosstalk between membrane and storage lipids facilitates heat stress management in Schizosaccharomyces pombe. PLoS One. 12(3):e0173739. doi: 10.1371/journal.pone.0173739.

Peksel, B., Gombos, I., Péter, M., Vigh, L. Jr., Tiszlavicz, Á., Brameshuber, M., Balogh, G., Schütz, G.J., Horváth, I., Vigh, L. and Török, Z. (2017) Mild heat induces a distinct "eustress" response in Chinese Hamster Ovary cells but does not induce heat shock protein synthesis. Sci Rep. 7(1):15643. doi: 10.1038/s41598-017-15821-8.

Penke, B., Bogár, F., Crul, T., Sántha, M., Tóth, M.E. and Vígh, L. (2018) Heat Shock Proteins and Autophagy Pathways in Neuroprotection: from Molecular Bases to Pharmacological Interventions. Int. J. Mol. Sci. 22;19(1). pii: E325. doi: 10.3390/ijms19010325. Review.