METAGENOMICS OF SYMBIOTIC INTERACTIONS

Symbiotic interactions range from very tight (e.g. organelle endosymbioses) to diffuse associations (e.g. co-localization) with a broad spectrum in between (e.g. predation, parasitism, commensalism, mutualism). These interactions involve elaborate communication between the partners at the cellular level. Whole-genome sequencing has recently introduced a surge of data into the field of symbiosis research, based on these data links are now being made between symbiotic lifestyle and molecular evolution. Here we apply metagenomics/ metatranscriptomics approaches to understand the specific role, physiology and metabolic capabilities of symbiotic community members. Metatranscriptomics approach is being validated in artificial, defined systems prior to its application in selected natural symbiotic systems.

Our major goal is the discovery of the potential of selected living interactions as specific sources of useful biomolecules and metabolites (e.g. antimicrobial peptides -AMPs-, biofuels, biomaterials, etc.). Microbial associations of various levels are analyzed in details and interrogated for the presence of such products.

A well studied symbiosis of high importance is the interaction of the gut with the microbiota, a community of microorganisms that is present in healthy individuals and essential for physiology and health. Notably, the intestinal bacteria enhance digestive efficiency by producing large quantities of hydrolytic enzymes. The microbiota also promotes cell differentiation in the intestine and protection against pathogens by producing AMPs. Various digestive systems are in the focus of our animal-microbe symbiosis research.

Despite the large number of known bioactive compounds produced by fungi, the biosynthetic potential of these microorganisms is greatly underestimated. Our studies focus on ecosystems in special habitats, we investigate bacterial-fungal interactions in extreme environments in order to describe the level of symbiotic interaction and identify valuable compounds.

We investigate the biofuel generating potential of various algal-bacterial symbiotic associations based on the natural mutualistic co-localization green algae and various bacterial species.



Figure 1. Fungal-bacterial interaction results in crust formations in highly acidic and sulphuric caves.



Selected publications

Kovács E., Wirth R., Maróti G., Bagi Z., Rákhely G., Kovács K. L. (2013) Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition. PLOS One, 8(10): e77265. doi:10.1371/journal.pone.0077265

Virágh M., Vörös D., Kele Z., Kovacs L., Fizil A., Lakatos G., Maróti G., Batta G., Vagvolgyi Cs. and Galgoczy L. (2014) Production of a defensin-like antifungal protein NFAP from Neosartorya fischeri in Pichia pastoris and its antifungal activity against filamentous fungal isolates from human infections. Protein Exp. and Pur. 94: 79–84

Boboescu I. Z., Gherman V., Mirel I., Pap B., Tengölics R., Rákhely G, Kovács KL., Kondorosi É. and G. Maróti# (2014). Simultaneous biohydrogen production and wastewater treatment based on the selective enrichment of the fermentation ecosystem. Int. J. Hydrogen Energy, 39: 1502-1510.

Tiricz H., Szűcs A., Farkas A., Pap B.,. Lima R. M., Maróti G., Kondorosi É., Kereszt A. (2013) Antimicrobial nodule-specific cysteine-rich peptides induce membrane depolarization associated changes in Sinorhizobium meliloti. Appl. Env. Micriobiol. 79:6737-46

V. D. Gherman, I. Z. Boboescu, B. Pap, É. Kondorosi, G. Gherman and G. Maróti# (2013) An acidophilic bacterial-archaeal-fungal ecosystem linked to formation of ferruginous crusts and stalactites. Geomicrobiology Journal, doi:10.1080/01490451.2013.836580

D. Sváb, B. Horváth, G.Maróti, U. Dobrindt, I.Tóth (2013) Sequence variability of P2-like prophage genomes carrying the cytolethal distending toxin V operon in Escherichia coli O157. Appl. Env. Micriobiol. 79:4958-64

D. Sváb, B. Horváth, A. Szucs, G. Maróti, I.Tóth (2013) Draft Genome Sequence of an Escherichia coli O157:H43 Strain Isolated from Cattle. Genome Announc. 1(3). doi:pii: e00263-13

D. Sváb, L. Galli, B. Horváth, G. Maróti, U. Dobrindt, A. G. Torres, M. Rivas, I.Tóth (2013) The long polar fimbriae (lpf) operon and its flanking regions in bovine Escherichia coli O157:H43 and STEC O136:H12 strains. FEMS Pathogens and Disease, 68(1):1-7

I. Z. Boboescu, V.D. Gherman, I. Mirel, G. Maróti, A. Negrea M. Ciopec, M. Motoc (2013) Development of a two-step fermentative biohydrogen production process using selectively enriched microbial populations as inoculum. Rev. Chim. Bucharest 64 (8):919-924

R. Wirth, E. Kovács, G. Maróti, Z. Bagi, G. Rákhely and K. L. Kovács (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnology for Biofuels, 5 (1):41

E. Sajben-Nagy, G. Maróti, L. Kredics, B. Horváth, Á. Párducz, C. Vágvölgyi, L. Manczinger (2012) Isolation of new Pseudomonas tolaasii bacteriophages and genomic investigation of the lytic phage BF7. FEMS Microbiology Letters. 332 (2):162-169

G. Rákhely, B. Hegedűs, M. Magony, K. Laczi, A. Tóth, G. Maróti, F.K. Medzihradszky, K.L. Kovács, K. Perei (2012). Metabolism of sulfonated aromatic compounds in Novosphingobium subarcticum sa1 strain. Env. Eng. Man. J. 11 (3):5

Szőri-Dorogházi E., Maróti G., Szőri M., Nyilasi A., Rákhely G. and Kovács KL. (2012). Analyses of the large subunit histidine-rich motif expose an alternative proton transfer pathway in [NiFe] hydrogenases. PLOS One. 7(4): e34666.

Kereszt A., Mergaert P., Maróti G., Kondorosi E. (2011). Innate immunity effectors and virulence factors in symbiosis. Curr Opin Microbiol. 14(1):76-81.

Maróti G, Kereszt A, Kondorosi E, Mergaert P. (2011). Natural roles of antimicrobial peptides in microbes, plants and animals. Res. Microbiol. 162(4):363-74.

Kovács K.L., Bagi Z., Kovács E., Maróti G., E. Szőri-Dorogházi, N. Ács, R. Wirth, R. Tengölics, A. Fülöp, G. Rákhely. (2011). Industrial microbiology for the production of biohydrogen and biogas, Acta Microbiologica et Immunologica Hungarica 58, 171-172.

Maróti J., Farkas A., Nagy I.K., Maróti G., Kondorosi É., Rákhely G., Kovács K. L. (2010). A Second soluble NiFe enzyme completes the hydrogenase set in Thiocapsa roseopersicina. Appl. Env. Micriobiol. 76:5113-5123.

Van de Velde W., Zehirov G., Szatmari A., Debreczeny M., Ishihara H., Kevei Z., Farkas A., Mikulass K., Nagy A., Tiricz H., Satiat-Jeunemaître B., Alunni B., Bourge M, Kucho K., Abe M., Kereszt A., Maróti G., Uchiumi T., Kondorosi E., Mergaert P. (2010). Plant peptides govern terminal differentiation of bacteria in symbiosis. Science. 327:1122-6.

Maróti, G., G. Rákhely, J Maróti, E. Dorogházi, E. Klement, F. K. Medzihradszky and K. L. Kovács. (2010). Specificity and selectivity of HypC chaperonins and endopeptidases in the molecular assembly machinery of [NiFe] hydrogenases of Thiocapsa roseopersicina. Int. J. Hydrogen Energy 35: 3358-3370.

Maróti, G., Tong, Y., Yooseph, S., Baden-Tillson, H., Smith, H.O., Kovács, K.L., Frazier, M., Venter, J.C., Xu, Q. (2009) Discovery of [NiFe] hydrogenase genes in metagenomic DNA: cloning and heterologous expression in Thiocapsa roseopersicina. Appl. Environ. Microbiol. 75:5821-30.